GLYCOCINNASPERIMICIN D, A NEW MEMBER OF GLYCOCINNAMOYLSPERMIDINE ANTIBIOTIC

Kazuyuki Dobashi, Katsuhiko Nagaoka, Yoshinori Watanabe, Makoto Nishida, Masa Hamada, Hiroshi Naganawa, Tomohisa Takita, Tomio Takeuchi and Hamao Umezawa

> Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication March 28, 1985)

Glycocinnasperimicin D was isolated from the fermentation filtrate of a strain of *Nocardia* sp. using various procedures of column chromatography. Glycocinnasperimicin D exhibited broad antibacterial spectrum. Its chemical structure was determined by NMR spectrometric analyses.

In the course of our screening for antibiotics, a new member of the glycocinnamoylspermidine group was found in the culture filtrate of *Nocardia* sp. strain MG615-7F6, and named glycocinnasperimicin **D**. This antibiotic has broad antibacterial spectrum. In this paper, we report on its fermentation, isolation, physico-chemical and biological properties. The strain also produced LL-BM123 β , γ_1 and γ_2^{10} .

Microorganism

The strain MG615-7F6 was isolated from a soil sample collected in Fuchu City, Tokyo, Japan. Cultural characteristics of the strain were related to those of BM123, NRRL 5646¹³.

Fermentation and Isolation

A loopful of a mycelial suspension from a slant culture of strain MG615-7F6 was transferred into a seed medium containing glucose 1.0%, glycerol 1.0%, sucrose 1.0%, oat meal 0.5%, soy bean meal 2.0%, pressed yeast 1.0%, Casamino Acids 0.5%, CaCO₃ 1.0% (pH 7.0), and incubated with rotary shaking (180 rpm) for 3 days at 30°C. The seed culture (600 ml) was inoculated into 15 liters of a medium composed of glucose 1%, starch 1%, glycerol 1%, Polypeptone 0.5%, meat extract 0.5%, NaCl 0.5%, and CaCO₃ 0.32% (pH 7.4), in a 30-liter jar-fermentor. The fermentation was carried out at 28°C for 72 hours under an agitation of 350 rpm, aeration of 15 liters per minute. The cultured broth was adjusted to pH 5.0 with 1 M HCl and filtered. The filtrate (14.5 liters) thus obtained was passed through a column of Amberlite IRC-50 (Na⁺-, H⁺-form, 1: 1, 2.0 liters). After washing with water and 50% aqueous acetone, the adsorbed material was eluted with 1 M HCl - acetone (1:1). The active fractions (assayed by a disk agar diffusion method using Bacillus subtilis PCI219) were collected and neutralized with 0.5 M NaOH. After evaporation of acetone, the solution was passed through a column of Amberlite XT-2 (80 ml) followed by elution with water. The active eluate was concentrated and lyophilized to give a pale yellow crude powder (124 mg). The powder was further purified by column chromatography on CM-Sephadex C-25 (150 ml) with linear gradient elution (NaCl, from 0.1 M to 1.2 M). The bioactive fraction was divided into two parts (fractions A and B);

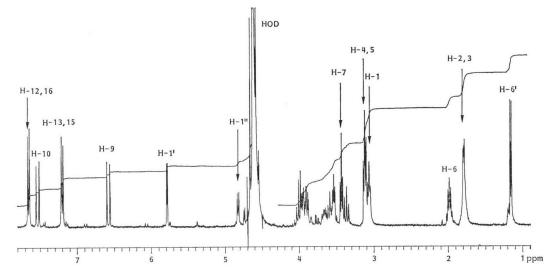


Fig. 1. ¹H NMR spectrum of glycocinnasperimicin D (400 MHz, 40.5°C, D₂O).

the bioactive agent present in fractions A and B was adsorbed on a small column of CHP-20P (37 ~ 75 μ m) (Mitsubishi Chemical Industries Limited) and desorbed with water. The activity in fraction A was separated further into two fractions. The early fraction of fraction A was glycocinnasperimicin D (7.1 mg) and the late one was identified as LL-BM123 γ complex (8.5 mg). The antibiotic from fraction B was identified as LL-BM123 β (10 mg) by direct comparison with authentic sample. These antibiotics could be distinguished by cellulose TLC: Eastman chromagram sheet No. 6065, 1-propanol - pyridine - acetic acid - water (20: 10: 3: 12); glycocinnasperimicin D, Rf 0.28; LL-BM123 γ , Rf 0.24; LL-BM123 β , Rf 0.13. LL-BM123 α was not found in our culture broth.

Physico-chemical Properties and Structure

Glycocinnasperimicin D is obtained as a colorless powder, $[\alpha]_D^{18} + 88^\circ$ (*c* 0.5, H₂O); mp > 300°C (dec); it is a basic substance, easily soluble in water and very hygroscopic. It shows positive reaction to ninhydrin, Rydon-Smith, and Sakaguchi reagents. Elemental analysis did not give a satisfactory value; a characteristic of LL-BM123 antibiotics²⁾.

The secondary ion mass spectrum [SIMS, m/z 695 (M+H)⁺] and the ¹³C NMR spectrum indicated the molecular formula $C_{s0}H_{50}N_{10}O_9$. The antibiotic showed UV maxima at 218 (log ε 4.13) and 287 nm (log ε 4.34) in water. In the ¹H NMR spectrum in D₂O (Fig. 1), two olefinic protons at δ 6.59 (1H, d, J=16.0 Hz), 7.53 (1H, d, J=16.0 Hz) and four aromatic protons at δ 7.20 (2H, d, J=9.0 Hz), 7.66 (2H, d, J=9.0 Hz) suggested the presence of a *p*-hydroxycinnamoyl moiety which is also present in LL-BM123 β and γ . The presence of a spermidine moiety was shown by methylene signals at δ 1.80 (4H, m), 1.99 (2H, m), 3.07 (2H, t), 3.13 (4H, t×2), and 3.43 (2H, t). Spin decoupling experiments indicated that the triplet signal at δ 3.43 was H-7 of spermidine; it is linked to the carbonyl group of cinnamoic acid through an amide bond. Known glycocinnamoylspermidine antibiotics are composed of a cinnamoylspermidine aglycone and a trisaccharide moiety³). However, glycocinnasperimicin D has a disaccharide moiety, as suggested by two anomeric protons at δ 5.79 (d, J=3.3 Hz) and 4.83 (d, J=9.1 Hz). A doublet signal at δ 1.06 (3H, d, J=6.2 Hz) and nine protons from δ 3.3 to 4.1 were attributed to the signals of methylenes and methines in the disaccharide moiety.

Position	Glycocinnasperi- micin D·HCl	LL-BM123 $\beta \cdot H_2 SO_4^a$	LL-BM123 $\tilde{\gamma}_1 \cdot H_2 SO_4^a$
1	37.1 (t) ^b		37.2
2	24.7 (t)	24.8	
3	23.6 (t)		23.6
4	47.7 (t)	47.8	
5	45.9 (t)		46.1
6	26.5 (t)		26.6
7	39.6 (t)		39.7
8	170.1 (s)		169.9
9	119.5 (d)		119.7
10	141.5 (d)		141.4
11	130.2 (s)		130.2
12, 16	130.6 (d)		130.6
13, 15	118.0 (d)		118.2
14	157.8 (s)	157.9°	158.0°
1'	96.0 (d)	96.0	96.4 (d)
2′	58.2 (d)	58.2	58.3 (d)
3'	69.2 (d)	69.2	69.2 (d)
4'	57.1 (d)	57.1	57.3 (d)
5'	70.8 (d)	70.8	71.0 (d)
6'	17.5 (q)	17.5	17.7 (q)
1''	82.5 (d)	82.2	82.4 (d)
2''	55.8 (d)	55.4	55.8 (d)
3‴	75.4 (d)	73.2	73.4 (d)
4‴	70.3 (d)	78.0	75.3 (d)
5''	67.2 (t)	64.6	64.6 (t)
1′′′′		101.8	98.2 (d)
2'''		53.2	56.1 (d)
3'''		57.0	60.8 (d)
4‴		66.9	70.0 (d)
5'''		66.7	66.9 (t)
2' C = N	158.2 (s)	158.3	158.3 (s)
4' C=0	159.8 (s)	159.7°	159.7 (s)°
2" C=0	162.1 (s)	161.7	162.1 (s)°
2''' C=O		162.1°	160.8 (s)
			156.5 (s)

Table 1. ¹³C NMR spectrum of glycocinnasperimicin D and LL-BM123 β , $\tilde{\tau}_1$ (25 MHz, D₂O internal dioxane δ =67.4).

^a Taken from ref 3.

^b Multiplicity in off-resonance spectrum.

^e These assignments were referred to the result of ref 4.

The ¹³C NMR spectrum of glycocinnasperimicin D showed six aromatic carbons, two olefinic carbons, and four carbonyl and/or imino carbons. The presence of two anomeric carbons at δ 96.0 and 82.5 and nine carbons in the disaccharide moiety was in accord with the result of the ¹H NMR analysis.

Comparison of ¹³C NMR spectrum of glycocinnasperimicin D with those of LL-BM123 β and γ_1 (Table 1)^{3,4)} indicated that the chemical shifts for the relevant carbons of these antibiotics, except for a substituent effect at C-4", were very similar. The observed downfield shifts of C-3", C-5" and the upfield shift of C-4" in glycocinnasperimicin D indicated a free hydroxyl group at C-4". Therefore, the disaccharide moiety should correspond to that of LL-BM123 β without the distal sugar part.

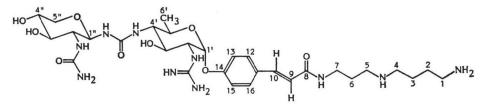


Fig. 3. IR spectrum of glycocinnasperimicin D (KBr).

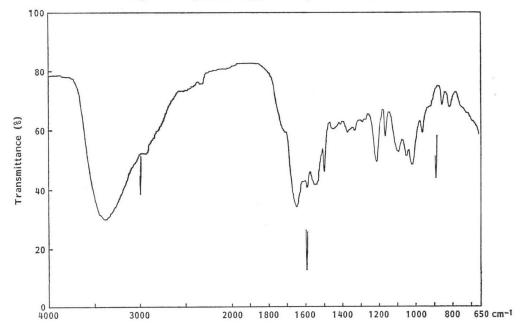


Table 2. Antimicrobial activity of glycocinnasperimicin D.

Organism	MIC (µg/ml)	Organism	MIC (µg/ml)	
Staphylococcus aureus 209P	1.56	Shigella dysenteriae JS11910	1.56	
S. aureus Smith	0.78	S. flexneri 4b JS11811	1.56	
S. aureus Ap01	6.25	S. sonnei JS11746	3.12	
S. epidermidis 109	3.12	Salmonella typhi T-63	0.39	
Corynebacterium bovis 1810	3.12	Proteus vulgaris OX19	0.39	
Escherichia coli NIHJ	0.39	P. rettgeri GN311	1.56	
E. coli K-12	0.39	P. rettgeri GN466	0.78	
<i>E. coli</i> JR66/W677	0.78	Serratia marcescens	6.25	
Mycobacterium smegmatis ATCC 607	6.25	Pseudomonas aeruginosa A3	12.5	
Klebsiella pneumoniae PC1602	1.56	P. aeruginosa GN-315		

The C-1" position linked to ureido nitrogen atom was reported by ELLESTAD *et al.*³⁾ to be an α -linkage in LL-BM123 β , γ_1 , and γ_2 . However, the signal of H-1" was covered by water signals when ¹H NMR was taken at 23°C. The 400 MHz ¹H NMR spectra at 40°C (D₂O) of glycocinnasperimicin **D** and LL-BM123 β clearly showed the proton signal of H-1"; the doublet at ∂ 4.83 with J of 9.1 Hz,

THE JOURNAL OF ANTIBIOTICS

 δ 4.84 with J of 9.0 Hz, respectively. These data indicated that the linkage at C-1" of both antibiotics should be β . From these results, we propose the structure of glycocinnasperimicin D as shown in Fig. 2.

Biological Effects

The antibacterial spectrum of glycocinnasperimicin D tested by serial agar dilution method is shown in Table 2. The 50% growth inhibitory concentration (IC₅₀) against Leukemia L-1210 cells was 2.0 μ g/ml.

 LD_{100} (iv) of glycocinnasperimicin D in mice was 50 mg/kg and LD_0 (iv) 25 mg/kg.

Acknowledgment

We are grateful to Dr. D. B. BORDERS, American Cyanamid Company, for their gift of LL-BM123 β and Γ_2 .

References

- TRESNER, H. D.; J. H. KORSHALLA, A. A. FANTINI, J. D. KORSHALLA, J. P. KIRBY, J. J. GOODMAN, R. A. KELE, A. J. SHAY & D. B. BORDERS: Glycocinnamoylspermidines, a new class of antibiotics. I. Description and fermentation of the organism producing the LL-BM123 antibiotics. J. Antibiotics 31: 394~397, 1978
- MARTIN, J. H.; M. P. KUNSTMANN, F. BARBATSCHI, M. HERTZ, G. A. ELLESTAD, M. DANN, G. S. REDIN, A. C. DORNBUSH & N. A. KUCK: Glycocinnamoylspermidines, a new class of antibiotics. II. Isolation, physicochemical and biological properties of LL-BM123β, *i*₁ and *i*₂. J. Antibiotics 31: 398~404, 1978
- ELLESTAD, G. A.; D. B. COSULICH, R. W. BROSCHARD, J. H. MARTIN, M. P. KUNSTMANN, G. O. MORTON, J. E. LANCASTER, W. FULMOR & F. M. LOVELL: Glycocinnamoylspermidines, a new class of antibiotics.
 The structures of LL-BM123β, r₁, and r₂. J. Am. Chem. Soc. 100: 2515~2524, 1978
- TSOU, H.-R.; R. R. FIALA, P. C. MOWERY & M. W. BULLOCK: Biosynthesis of the spermidine and guanidino units in the glycocinnamoylspermidine antibiotic cinodine. J. Antibiotics 37: 1382~1387, 1984